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Kurt Vogel nochmals in Erinnerung
et en mémoire de Jean Cassinet

Abstract
From the early fourteenth century onward, some Italian Abbacus manuscripts begin to use particular
abbreviations for algebraic operations and objects and, to be distinguished from that, examples of symbolic
operation. The algebraic abbreviations and symbolic operations we find in German Rechenmeisterwritings
can further be seen to have antecedents in Italian manuscripts. This might suggest a continuous trend or
perhaps even an inherent logic in the process. Without negating the possibility of such a trend or logic,
the paper will show that it becomes invisible in a close-up picture, and that it was thus not understood –
nor intended – by the participants in the process.
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Before Italy

Ultimately, Italian abbacus algebra1 descended from Arabic algebra – this is obvious from
its terminology and techniques. I shall return very briefly to some of the details of this
genealogy – not as much in order to tell what happened as to point out how things did not
happen; this is indeed the best we can do for the moment.

First, however, let us have a look at Arabic algebra itself under the perspective of
“symbolism”.2

1 The “abbacus school” was a school training merchant youth and a number of other boys, 11-12 years
of age, in practical mathematics. It flourished in Italy, between Genoa-Milan-Venice to the north and
Umbria to the south, from c. 1260 to c. 1550. It taught calculation with Hindu numerals, the rule of three,
partnership, barter, alligation, simple and composite interest, and simple false position. Outside this
curriculum, many of the abbacus books (teachers’ handbooks and notes, etc.) deal with the double false
position, and from the fourteenth century also with algebra.

2 I shall leave open the question of what constitutes an algebraic “symbolism”, and adopt a rather tolerant
stance. Instead of delimiting by definition I shall describe the actual character and use of notations.
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The earliest surviving Arabic treatise on the topic was written by al-Khwārizmı̄ somewhere
around the year 820.3 It is clear from the introduction that al-Khwārizmı̄ did not invent the
technique: the caliph al-Ma mūn, so he tells, had asked him to write a compendious introduction
to it, so it must have existed and been so conspicuous that the caliph knew about it; but it may
have existed as a technique, not in treatise form. If we are to believe al-Khwārizmı̄’s claim
that he choose to write about what was subtle and what was noble in the art (and why not
believe him?), al-Khwārizmı̄’s treatise is likely not to contain everything belonging to it but
to leave out elementary matters.

It is not certain that al-Khwārizmı̄’s treatise was the first of its kind, but of the competitor
to this title (written by one ibn Turk) only a fragment survives [ed. Sayılı 1962]. In any case
it is clear that one of the treatises has influenced the other, and for our purpose we may take
al-Khwārizmı̄’s work to represent the beginning of written Arabic algebra well.

Al-Khwārizmı̄’s algebra (proper) is basically a rhetorical algebra. As al-Khwārizmı̄ starts
by saying [ed. Hughes 1986: 233], the numbers that are necessary in al-jabr wa’l muqābalah
are roots, census and simple numbers. Census (eventually censo in Italian) translates Arabic
māl, a “possession” or “amount of money”, the root (radix/jidhr, eventually radice) is its square
root. As al-Khwārizmı̄ explains, the root is something which is to be multiplied by itself, and
the census that which results when the root is multiplied by itself; while the fundamental second-
degree problems (on which presently) are likely to have originated as riddles concerned with
a real amount of money and its square root (similar to what one finds, for instance, in Indian
problem collections),4 we see that the root is on its way to take over the role as basic unknown
quantity (but only on its way). In the first steps of a problem solution, the basic unknown may
be posited as a res or šay , “a thing” (eventually cosa); but in second-degree problems it
eventually becomes a root, as we shall see.

As an example of this we may look at this problem [ed. Hughes 1986: 250]:5

I have divided ten into two parts. Next I multiplied one of them by the other, and twenty-one resulted.
Then you now know that one of the two sections of ten is a thing. Therefore multiply that with ten

3 The treatise is known from several Arabic manuscripts, which have now appeared in a critical edition
[Rashed 2007], and from several Latin translations, of which the one due to Gherardo of Cremona [ed.
Hughes 1986] is not only superior to the other translations as a witness of the original but also a better
witness of the original Arabic text than the extant Arabic manuscripts as far as it goes (it omits the geometry
and the chapter on legacies, as well as the introduction) – both regarding the grammatical format [Høyrup
1998{d}] and as far as the contents is concerned [Rashed 2007: 89].

4 Correspondingly, the “number term” is an amount of dirham (in Latin dragmata), no pure number.

5 My translation, as everywhere in the following when no translator into English is identified.

- 2 -



with a thing removed, and you say: Ten with a thing removed times a thing are ten things, with a
census removed, which are made equal to twenty-one. Therefore restore ten things by a census, and
add a census to twenty-one; and say: t e n t h i n g s a r e m a d e e q u a l t o t w e n t y - o n e a n d
a c e n s u s . T h e r e f o r e h a l v e t h e r o o t s , a n d t h e y w i l l b e fi v e , w h i c h y o u
mu l t i p l y w i t h i t s e l f , a n d tw e n t y - fi v e r e s u l t s . F r om t h i s y o u t h e n t a k e aw a y
tw e n t y - o n e , a n d f o u r r em a i n s . Wh o s e r o o t y o u t a k e , w h i c h i s t w o , a n d
y o u s u b t r a c t i t f r om t h e h a l f o f t h e t h i n g s . T h e r e t h u s r ema i n s t h r e e , w h i c h
i s o n e o f t h e p a r t s .

This falls into two sections. The first is a rhetorical-algebraic reduction which more or less
explains itself.6 There is not a single symbol here, not even a Hindu-Arabic numeral. The second
section, marked in spaced writing, is an unexplained algorithm, and indeed a reference to one
of six such algorithms for the solution of reduced and normalized first- and second-degree
equations which have been presented earlier on.

Al-Khwārizmı̄ is perfectly able to multiply two binomials just in the way he multiplies
a monomial and a binomial here. He would thus have no difficulty in finding that a “root
diminished by five” multiplied by itself gives a “census and twenty-five, diminished by ten
roots”. But he cannot go the other way, the rhetorical style and the way the powers of the
unknown are labelled makes the dissolution of a trinomial into a product of two binomials too
opaque either for al-Khwārizmı̄ himself or for his “model reader”. After presenting the algorithms
al-Khwārizmı̄ therefore offers geometric, not algebraic proofs – proofs not of his own making
(as are his geometric illustrations of how to deal with binomials), but that is of no importance
here.

It is not uncommon that rhetorical algebra like that of al-Khwārizmı̄ is translated into letter
symbols, the thing becoming x and the census becoming x2. The above problem and its solution
thereby becomes

10 = x+(10–x) , x (10–x) = 21
10x–x2 = 21
10x = 21+x2

x = 10
2
– ( 10

2
)2–21

To the extent that this allows us to follow the steps in a medium to which we are as accustomed
as the medieval algebraic calculators were to the use of words, it may be regarded as adequate.
But only to this extent: the letter symbolism makes it so much easier to understand the

6 However, those who are already somewhat familiar with the technique may take note of a detail: we
are to restore ten things with a census, and then add a census to 21. “Restoring” (al-jabr) is thus not the
addition to both sides of the equation (as normally assumed, in agrement with later usage) but a reparation
of that side where something is lacking; this is followed by a corresponding addition to the other side.
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Figure 1

al-Qal-Souissi-arabisk

Al-Qalasādı̄’s explanation of how to multiply «8 things less 4» by «6 census less 3 things»
in Souissi’s edition [1988: Ar. 96] – symbolic notations in frames

al-Qal-Woepcke

The same in Woepcke’s translation [1859: 427].
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dissolution of trinomials into products that the need for geometric proofs becomes incomprehen-
sible – which has to do with the theme of our meeting.

Geometric proofs recur in many later Arabic expositions of algebra – not only in Abū Kāmil
but also in al-Karajı̄’s Fakhrı̄ [Woepcke 1853: 65–71], even though al-Karajı̄’s insight in the
arithmetic of polynomials7 would certainly have allowed him to offer purely algebraic proofs
(his Al-Badı̄ explicitly shows how to find the square root of a polynomial [ed. Hebeisen 2008:
117–137]). What is more: he brings both the type of proofs which goes back to al-Khwārizmı̄
and the type based directly on Elements II (as introduced by Thābit ibn Qurrah, ed. [Luckey
1941]).

Some Arabic writers on algebra give no geometric proofs – for instance, ibn Badr and
ibn al-Bannā . That, however, is because they give no proofs at all; algebraic proofs for the
solution of the basic equations are absent from the entire Arabic tradition.8

This complete absence is interesting by showing that we should expect no direct connection
between the existence of an algebraic symbolism and the creation of the kind of reasoning it
seems with hindsight to make possible. It has indeed been known since Franz Woepcke’s work
in [1854] that elements of algebraic symbolism were present in the Maghreb, at least in the
mid-fifteenth century (they are found in al-Qalasādi’s Kašf,9 but also referred to by ibn
Khaldūn). Woepcke points to symbols for powers of the unknown and to signs for subtraction,
square root and equality; symbols for the powers10 are written above their coefficient, and

7 Carried by a purely rhetorical exposition, only supplemented by use of the particle ila (“less”) – still
a word, but used contrary to the rules of grammar – to mark a subtractive contribution.

8 An interesting variant is found in ibn al-Hā im’s Šarh al-Urjūzah al-Yasmı̄nya, “Commentary to al-
Yāsamin’s Urjuza” from [ed., trans. Abdeljaouad 2004: 18f]. Ibn al-Hā im explains that the specialists
have a tradition for giving geometric proofs, by lines (viz, as Thābit) or by areas (viz, as al-Khwārizmı̄),
which however presuppose familiarity with Euclid. He therefore gives an arithmetical argument, fashioned
after Elements II.4. For use of this theorem he is likely to have had precursors, since Fibonacci also seems
to model his first geometric proof after this proposition [ed. Boncompagni 1857: 408] (his second proof
is “by lines”).

9 The use of the symbols can thus be seen in Mohamed Souissi’s edition [1988]. His translation renders
the same expressions in post-Cartesian symbols; edition as well as translation change the format of the
text (unless this change of format has already taken place in the manuscript he uses, which is not to be
excluded). Woepcke’s translation [1859] renders the formulae more faithfully (using K for the cube, Q
for the square and C for the unknown itself), and also renders the original format better (putting the
symbolic notations outside the text). Figure 1 confronts Woepcke’s translation with Souissi’s Arabic text.

10 There are individual signs for the thing, the census and the cube. Higher powers are represented by
products of these (the fifth power thus with the signs for census and cube, one written above or in
continuation of the other, corresponding to the verbal name māl ka b. However, the arithmetization of
the sequence of “powers” (i.e., exponents) was present. Ibn al-Bannā must have known it, since he says
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the root sign above the radicand. He shows that these symbols (derived from the initial letters
of the corresponding words, prolonged so as to be able to cover composite expressions, that
is, to delimit algebraic parentheses11) are used to write polynomials and equations, and even
to operate on the equations. Making the observation (p. 355) that

la condition indispensable pour donner à des signes conventionnels quelconques le caractère d’une
notation, c’est qu’ils soient toujours employeés quand il y a lieu, et toujours de la même manière

he shows that one manuscript at his disposal fulfils this condition (another one not, probably
because of “la negligence d’un copiste ou d’une succession de copistes”).

Ibn Khaldūn’s description made Woepcke suspect that the

Figure 2

Ibn al-Yāsamin’s scheme for
multiplying 1/2 māl less

1/2
šai by 1/2 šai .

notation goes back to the twelfth century, as has now been
confirmed, firstly, by an isolated passage in ibn al-Yāsamin’s
Talqı̄h al-afkār reproduced by Mahdi Abdeljaouad [2002: 11]
after Touhami Zemmouli’s master thesis and corresponding
exactly to what al-Qalasādi was going to do – see Figure 2;
and secondly, by a manuscript of al-Hassār’s Kitāb al-bayān
wa’l-tadhkar fı̄ masā il al-ghubār, copied in Baghdad in 1194
CE, where the full gamut of the notation is amply used accord-

(he was a purist) that it is not “allowed” to speak of the power of the māl (as 2), viz because it is an entity
of its own; ibn Qunfudh (1339–1407), in the commentary from which we know this prohibition, states
that other writers on algebra did not agree, and speaks himself of the power of the number as “nothing”,
that is, 0 [Djebbar 2005: 95f]. The individual names for the powers should thus not have been a serious
impediment for the development of algebraic proofs, had the intention been there to develop them.

11 Three points should perhaps be made here. One concerns terminology. “Parenthesis” does not designate
the bracket but an expression that is marked off, for example by a pair of brackets; but pauses may also
mark off a parenthesis in the flow of spoken words, and a couple of dashes may do so in written prose.
What characterizes an algebraic parenthesis is that it marks off a single entity which can be submitted
to operations as a whole, and therefore has to be calculated first in the case of calculations. When divisions
is indicated by a fraction line, this line delimits the numerator as well as the denominator as parentheses
if they happen to be composite expressions (for instance, polynomials). Similarly, the modern root sign
marks off the radicand as a parenthesis.

The remaining points are substantial, one of them general. The possibility of “embedding” is
fundamental for the unrestricted development of mathematical thought, as I discuss in [Høyrup 2000].
An algebraic language without full ability to form parenthesis function is bound to remain “close to earth”.

The last point, also substantial, is specific and concerns the Maghreb notation. It did not use the
parenthesis function to the full. The fraction line and the root sign might mark off polynomials as
parentheses; the signs for powers of the unknown, on the other hand, might at most mark off a composite
numerical expression – see [Abdeljaouad 2002: 25–34] for a much more detailed exposition. This should
not surprise us: even Descartes eschewed general use of the parenthesis, for instance, as (y–3)2, as pointed
out by Michel Serfati [1998: 259].
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ing to [Abdeljaouad 2007: 3].
Though manuscripts differ in this respect (as pointed out by Woepcke), the normal use

of the symbolic calculations appears to have been outside the running text, as a marginal
commentary, illustration or explanation. A good exemplification of this is a manuscript of ibn
al-Hā im’s Šarh al-Urjūzah al-Yasmı̄nya, “Commentary to al-Yāsamin’s Urjuza” (originally
written in 1387) [ed. Abdeljaouad 2004]. Figure 3 shows a page from this “Jerba manuscript”,
written in Istanbul in 1747. According to ibn Mun im (†1228) and al-Qalasādı̄, the marginal
calculations may correspond to what was to be written in a takht (a dustboard, in particular
used for calculation with Hindu numerals) or a lawha (a clayboard used for temporary writing) –
see [Lamrabet 1994: 203] and [Abdeljaouad 2002: 14,19f ]. The use of such a device would
explain that the examples of symbolic notation we find in manuscripts normally do not contain
intermediate calculations, nor erasures [Abdeljaouad 2002: 20].

We are accustomed to consider the notation for fractions as something quite separate from
algebraic symbolism. In twelfth-century Maghreb, the two probably belonged together, and
ibn al-Yāsamin’s Talqı̄h al-afkār describes the various notations with which we are familiar
from Fibonacci’s Liber abbaci (and other works of his): simple fractions written with the fraction
line, ascending continued fractions ( meaning + + ), and additively and multiplicativelye c a

f d b
a
b

c
bd

e
bdf

compounded fractions – see [Lamrabet 1994: 180f ].

Latin algebra: Liber mahamaleth, Liber abbaci, translations of al-Khwārizmı̄, and
Jordanus

The earliest documents in our possession from “Christian Europe” which speak of algebra
are the Liber mahamaleth and, with a proviso, Robert of Chester’s translations of al-Khwārizmı̄’s
Algebra (c. 1145); slightly later is Gherardo da Cremona’s translation of al-Khwārizmı̄’s treatise.
All of these are from the twelfth century. From 1228 we have the algebra chapter in Fibonacci’s
Liber abbaci (the first edition from 1202 was probably rather similar, but we do not know how
similar). In his De numeris datis, Jordanus de Nemore presented an alternative to algebra,
showing how the familiar results could be based in (rather) strictly deductive manner on his
Elements of Arithmetic, but he avoided to speak about algebra (hinting only for connoisseurs
at the algebraic sub-text by using many of the familiar numerical examples) – see the analysis
in [Høyrup 1988: 332–336]. Finally, around 1300 a revised version of al-Khwārizmı̄’s Algebra
of interest for our topic was produced (ed. [Kaunzner 1986], cf. [Kaunzner 1985]).

The Liber mahamaleth and the Liber abbaci share certain characteristics, and may therefore
be dealt with first.
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Figure 3

ibn al-Ha’im

A page from the “Jerba manuscript” of ibn al-Hā im’s Šarh al-Urjūzah al-Yasmı̄ya [ed.
Abdeljaouad 2004: ar. 45].
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All extant manuscripts of the Liber mahamaleth12 have lost an introductory systematic
presentation of algebra, which however is regularly referred to.13 There are also references
to Abū Kāmil,14 and a number of problem solutions make use of algebra. Fractions are written
in the Maghreb way, with Hindu numerals and fraction line;15 there are also copious marginal
calculations in rectangular frames probably rendering computation on a lawha. However, one
finds no more traces of algebraic symbolism than in al-Khwārizmı̄’s and Abū Kāmil’s algebraic
writings.

Fibonacci uses ibn al-Yāsamin’s fraction notations to the full in the Liber abbaci [ed.
Boncompagni 1857], writing composite fractions from right to left and mixed numbers with
the fraction to the left – all in agreement with Arabic customs. Further, he often illustrates non-
algebraic calculations in rectangular marginal frames suggesting a lawha. That systematic
presentation of the algebraic technique which has been lost from the Liber mahamaleth is present
in the Liber abbaci; there is no explicit reference to Abū Kāmil, but there are unmistakeable
borrowings (which could of course be indirect, mediated by one or more of the many lost
treatises). When the “thing” technique is used in the solution of commercial or recreational
first-degree problems,16 it is referred to as regula recta, not as algebra. But in one respect
their algebras are similar: they are totally devoid of any hint of algebraic symbolism.17

So is Gherardo’s translation of al-Khwārizmı̄, which is indeed very faithful to the original –
to the extent that no Hindu numerals nor fraction lines occur, everything is completely verbal.

Robert does use Hindu numerals heavily in his translation (as we know it), but apart from

12 I have consulted [Sesiano 1988] and a photocopy of the manuscript Paris, Bibliothèque Nazionale, ms.
latin 7377A.

13 Thus fol 154v, “sicut docuimus in algebra”; fol. 161r, “sicut ostensum est in algebra”.

14 Thus fol. 203r, “modum agendi secundum algebra, non tamen secundum Auoqamel”; cf. [Sesiano 1988:
73f, 95f].

We may observe that the spelling “Auoqamel” reflects an Iberian pronunciation.

15 However, ascending continued fractions are written in a mixed system and not in ibn al-Yāsamin’s
notation – e.g., “ et unius sue ” (fol. 167r) for + ( means “quinte”).4

5
2
5

e
5

4
5

2
5

1
5

e
5

16 The Liber mahamaleth contains several pseudo-commercial problems involving the square root of an
amount of money, leading to second-degree problems – see [Sesiano 1988: 80, 83]. The Liber abbaci
contains nothing of the kind, and no second-degree problems outside the final chapter 15.

17 Florian Cajori [1928: I, 90] has observed a single appearance of in the Pratica geometrie [ed.
Boncompagni 1862: 209]. Given how systematically Fibonacci uses his notations for composite fractions
we may be sure that this isolated abbreviation is a copyist’s slip of the pen (the manuscript is from the
fourteenth century, where this abbreviation began to spread). Marginal reader’s notes in a manuscript of
the Flos are no better evidence of what Fibonacci did himself.
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that his translation is also fully verbal. It has often been believed, on the faith of Karpinski’s
edition [1915: 126] that his translation describes an algebraic formalism. It is true that the
manuscripts contain a final list of Regule 6 capitulis algabre correspondentes making use of
symbols for census, thing and dragma (the “unit” for the number term, we remember); they
are classified as an appendix by Barnabas Hughes [1989: 67], but even he appears (p. 26) to
accept them as genuine. However, the symbols are those known from the southern Germanic
area of the later fifteenth century,18 and all three manuscripts were indeed written in this area
during that very period [Hughes 1989: 11–13]. The appendix has clearly crept in some three
centuries after Robert made his translation.

Far more interesting from the point of view of

Figure 4

Kaunzner
-Lyell

From Oxford, Bodleian Library, Lyell 52,
fol. 45r [Kaunzner 1986: 64f]

symbolism is the anonymous redaction from around
1300. It contains a short sectionQualiter figurentur
census, radices et dragma, “How census, roots and
dragmas are represented” [ed. Kaunzner 1986:
63f ]. Here, census are written as c, roots as r, and
dragmata (the unit for number) as d or not at all.
If a member is subtractive, a dot is put under it.
These symbols are written below the coefficient,
not above, as in the Maghreb notation. In Figure 4 we see (in photo and inWolfgang Kaunzner’s
transcription) “2 census less 3 roots”, “2 census less 4 dragmata”, “5 roots less 2 census, and
“5 roots less 4 dragmata”. Outside this section, the notation is not used, which speaks against
its being an invention of the author of the redaction; it rather looks as if he reports something
he knows from elsewhere, and which, as he says, facilitates the teaching of algebraic
computation. He refers not only to additive-subtractive operations but also to multiplication,
stating however only the product of thing by thing and of thing by number. He can indeed do
nothing more, he has not yet explained the multiplication of binomials. The notation is obviously
not identical with what we find in the Maghreb texts; the similarity to what we find in al-
Qalasādı̄ and ibn al-Yāsamin is sufficiently great, however, to suggest some kind of inspiration –
very possibly indirect. However that may be: apart from an Italian translation from c. 1400
(Vatican, Urb. lat. 291), where c is replaced by s (for senso) and r by c (for cose), no influence
in later writings can be traced. A brief description of a notation which is not used for anything

18 One of them is an abbreviation of the spelling zenso/zensus, the spelling of many manuscripts from
northern Italy (below, note 68). The spelling zensus as well as the abbreviation were taken over in Germany
(as the north-Italian spelling cossa was taken over as coss); the spelling was unknown in twelfth-century
Spain, and the corresponding abbreviation could therefore never have been invented in Spain in 1145.
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was obviously not discovered to be of great importance (whether the redactor believed it to
be can also be doubted, given that he does not insist by using it in the rest of the treatise).

Jordanus de Nemore’sDe numeris datis precedes this redaction of al-Khwārizmı̄ by a small
century of so.19 It is commonly cited as an early instance of symbolic algebra, and as a matter
of fact it employs letters as general representatives of numbers. At the same time it is claimed
be very clumsy – which might suggest that the interpretation as symbolic algebra could be
mistaken. We may look at an example:20

If a given number is divided into two and if the product of one with the other is given, each of them
will also be given by necessity.

Let the given number abc be divided into ab and c, and let the product of ab with c be given
as d, and let similarly the product of abc with itself be e. Then the quadruple of d is taken, which
is f. When this is withdrawn from e, g remains, and this will be the square on the difference between
ab and c. Therefore the root of g is extracted, and it will be b, the difference between ab and c. And
since b will be given, c and ab will also be given.

As we see, Jordanus does not operate on his symbols, every calculation leads to the introduction
of a new letter. What Jordanus has invented here is a symbolic representation of an algorithm.

The letter symbolism is also used in Jordanus’s De elementis arithmetice artis, which is
presupposed by the De numeris datis and hence earlier. In the algorithm treatises, letters are
used to represent unspecified digits [Eneström 1907: 146]; in the two demonstrations that are
quoted by Eneström (p.140f), the revised version can be seen also to use the mature notation,
while it is absent from the early version. The assumption is close at hand that Jordanus developed
the notation from the representation of digits by letters in his earliest work; it is hard to imagine
that it can have been inspired in any way by theMaghreb notations. This representation of digits
might have given rise to an algebraic symbolism – but as we see, that was not what Jordanus
aimed at. Actually – as mentioned above – he did not characterize his De numeris datis as
algebra even though he shows that he knows it to be at least a (theoretically better founded)

19 As well known, the only certain date ante quem for Jordanus is that all his known works appear in
Richard de Fournival’s Biblionomina [ed. de Vleeschauwer 1965], which was certainly written some time
before Richard’s death in 1260 [Rouse 1973: 257]. However, one manuscript of Jordanus’s Demonstratio
de algorismi (Oxford, Bodleian Library, Savile 21) seems to be written by Robert Grosseteste in 1215–16,
and in any case at that moment [Hunt 1955: 134] . This is the revised version of Jordanus’s treatise on
algorism. In consequence, Jordanus must have been beyond his first juvenile period by then. It seems
likely (but of course is not certain) that the arithmetical works (the Elements and the Data of arithmetic)
are closer in time to the beginning of his career that works on statics and on the geometry of the astrolabe,
and that they should therefore antedate 1230.

20 Translated from [Hughes 1981: 58] (Hughes’ own English translation is free and therefore unfit for
the present purpose).
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alternative to algebra.
There are few echoes of this alternative in the following centuries. When taking up algebra

in the mid-fourteenth century in his Quadripartitum numerorum ([ed. l’Huillier 1990], cf.
[l’Huillier 1980]), Jean de Murs borrows from the Liber abbaci, not from Jordanus. Somewhere
around 1450, Peurbach refers in a poem to “what algebra calculates, what Jordanus demonstrates”
[ed. Größing 1983: 210], and in his Padua lecture from 1464 [ed. Schmeidler 1972: 46],
Regiomontanus refers in parallel to Jordanus’s “three most beautiful books about given numbers”
and to “the thirteen most subtle books of Diophantos, in which the flower of the whole of
arithmetic is hidden, namely the art of the thing and the census, which today is called algebra
by an Arabic name”. Regiomontanus thus seems to have been aware of the connection to algebra,
and he also planned to print Jordanus’s work (but suddenly died before any of his printing plans
were realized).21

Two German algebraists from the sixteenth century knew, and used, Jordanus’s quasi-
algebra: Adam Ries and Johann Scheubel. The codex called Adam Ries’ Coß [ed. Kaunzner
& Wußing 1992] includes a fragment of an originally complete redaction of the De numeris
datis, containing the statements of the propositions in Latin and in German translation, and
for each statement an alternative solution of a numerical example by cossic technique; Jordanus’s
general proofs as well as his letter symbols have disappeared [Kaunzner & Wußing 1992: II,
92–100]. From Scheubel’s hand, a complete manuscript has survived. It has the same character –
as Barnabas Hughes says in his description [1972: 222f ], “Scheubel’s revision and elucidation
[...] has all the characteristics of an original work save one: he used the statements of the
propositions enunciated by Jordanus”. Both thus did to Jordanus exactly what Jordanus had
done to Arabic algebra: they took over his problems and showed how their own technique
(basically that of Arabic algebra) allowed them to deal with them in what they saw as a more
satisfactory manner. Jordanus’s treatise must thus have had a certain prestige, even though his
technique appealed to nobody.22

I only know of two works where Jordanus’s letter formalism turns up after his own times,
both from France. One is in Lefèvre d’Étaples’ edition of Jordanus’s De elementis arithmetice

21 As we shall see, these prestigious representatives of Ancient and university culture had no impact on
Regiomontanus’s own algebraic practice.

22 Vague evidence for prestige can also be read from the catalogue the books belonging to a third Vienna
astronomer (Andreas Stiborius, c. 1500). Three neighbouring items in the list are dedomenorum euclidis.
Iordanus de datis. Demonstrationes cosse [Clagett 1978: 347]. Whether it was Stiborius (in the ordering
of his books) or Georg Tannstetter (who made the list) who understood De numeris datis as belonging
midway between Euclid’s Data and algebra remains a guess.
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artis [Lefèvre d’Étaples 1514] (first edition 1494). The other is Claude Gaspar Bachet’s
Problemes plaisans et delectables, que se font par les nombres [1624] (first edition 1612), where
(for the first and only time?) Jordanus’s technique is used actively and creatively by a later
mathematician.23

Abbacus writings before algebra

The earliest extant abbacus treatises are roughly contemporary with the al-Khwārizmı̄-
redaction (at least the originals – what we have are later copies). They contain no algebra, but
their use of the notations for fractions is of some interest.

Traditionally, a Livero dell’abbecho [ed. Arrighi 1989] conserved in the manuscript Florence,
Ricc. 2404, has been supposed to be the earliest extant abbacus book, “internal evidence”
suggesting a date in the years 1288–90. Since closer analysis reveals this internal evidence to
be copied from elsewhere, all we can say on this foundation is that the treatise postdates 1290
[Høyrup 2005: 47 n. 57] – but not by many decades, see imminently.

The treatise claims in its incipit to be “according to the opinion” of Fibonacci. Actually,
it consists of two strata – see the analysis in [Høyrup 2005]. One corresponds to the basic
curriculum, and has nothing to do with Fibonacci; the other contains advanced matters, translated
from the Liber abbaci but demonstrably often without understanding.

The Fibonacci-stratum copies his numbers, not only his mixed numbers with the fraction
written to the left ( 10 where we would write 10 ) but also his ascending continued fractions2

7
2
7

(written, we remember, in Maghreb notation, and indeed from right to left, as done by ibn al-
Yāsamin, cf. above). However, the compiler does not understand the notation, at one place [ed.
Arrighi 1989: 112], for instance, he changes , standing in the Liber abbaci [ed.33 6 42 46

53 53 53 53

Boncompagni 1857: 273] for

,
46

42
6 33
53
53

53
53

into . It is obvious, moreover, that he has not got the faintest idea about algebra: he3364246
53535353

mostly omits Fibonacci’s alternative solutions by means of regula recta; on one occasion where
he does not (fol. 83r, ed. Arrighi 1989: 89) he skips the initial position and afterwards translates

23 In order to discover that, one has to go to the seventeenth-century editions. Labosne’s “edition” [1959]
is a paraphrase in modern algebraic symbolism. Ries and Stifel were not the last of their kind.

- 13 -



res as an ordinary, not an algebraic cosa.24

The basic stratum contains none of the composite fractions (but ordinary fractions written
with fraction line). Very strange is its way to speak of concrete mixed numbers. On the first
few pages they look quite regular – e.g. “d. 6 de denaio”, meaning “denari 6, of a27

28
27
28

denaro”. Then, suddenly (with some slips that show the compiler to copy from material written
in the normal way) the system changes, and we find expressions like “d. 4 de denaio”, “denari2

7
2
7

4 of a denaro” – obviously a misshaped compromise between Fibonacci’s way to write mixed
numbers with the way of the source material, which hence can not have been produced by
Fibonacci (all his extant works write simple and composite fractions as well as mixed numbers
in the same way as the Liber abbaci). All in all, the Livero dell’abbecho is thus evidence, on
one hand, that the Maghreb notations adopted by Fibonacci had not gained foothold in the early
Italian abbacus environment, secondly, that the aspiration of the compiler to dress himself in
the robes of the famous culture hero was not accompanied by understanding of these notations
(nor of other advanced matters presented by Fibonacci).

The other early abbacus book is the “Columbia Algorism” (NewYork, Columbia University,
MS X 511 A113, ed. [Vogel 1977]). The manuscript was written in the fourteenth century,
but a new reading of a coin list which it contains dates this list to the years 1278–1284 [Travaini
2003: 88–92]. Since the shapes of numerals are mostly those of the thirteenth century (with
occasional slips, where the scribe used those of his own epoch) [Vogel 1977: 12], a dating close
to the coin list seems plausible – for which reason we must suppose the Columbia algorism
to be (a fairly scrupulous copy of) the oldest extant abbacus book.

There is no trace of familiarity with algebra, neither a systematic exposition nor an
occasional algebraic cosa. A fortiori, there is no algebraic symbolism whatsoever, not even
rudiments. Another one of the Maghreb innovations is present, however [Vogel 1977: 13].
Ascending continued fractions turn up several times, sometimes in ibn al-Yāsamin’s notation,
but once reversed and thus to be read from left to right ( standing for ). Nothing else1 1

4 2
3
8

suggests any link to Fibonacci. Moreover, the notation is used in a way never found in the Liber
abbaci, the first “denominator” being sometimes the metrological denomination – thus 1 1

gran 2

being used for 1 gran (or rather, as it would be written elsewhere in the manuscript, for 11
2

gran ). Next, the Columbia algorism differs from all other Italian treatises (including those1
2

written in Provence by Italians) in its formulation of the rule of three – but in a way which
approaches it to Ibero-Provençal writings of abbacus type – see [Høyrup 2008a: 5f ]. Finally,

24 This total ignorance of everything algebraic allows us to conclude that the treatise cannot be written
many decades after 1290.
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at least one problem in the Columbia algorism is strikingly similar to a problem found in a
Castilian manuscript written in 1393 (as a copy of an earlier original) while not appearing
elsewhere in sources I have inspected – see [Høyrup 2005: 42 n. 32]. In conclusion it seems
reasonable to assume that the Columbia algorism has learned the Maghreb notation for ascending
continued fractions not from Fibonacci but from the Iberian area.

The beginning of abbacus algebra

The earliest abbacus algebra we know of was written in Montpellier in 1307 by one Jacopo
da Firenze (or Jacobus de Florentia; otherwise unknown as a person). It is contained in one
of three manuscripts claiming to represent his Tractatus algorismi (Vatican, Vat. lat. 4826; the
others are Florence, Ricc. 2236, and Milan, Trivulziana 90).25 As it follows from in-depth
analysis of the texts [Høyrup 2007a: 5–25 and passim], the Florence and Milan manuscripts
represent a revised and abridged version of the original, while the Vatican manuscript is a
meticulous copy of a meticulous copy of the shared archetype for all three manuscripts (extra
intermediate steps not being excluded, but they must have been equally meticulous if they exist);
this shared archetype could be Jacopo’s original, but also a copy written well before 1328.26

Jacopo may have been aware of presenting something new. Whereas the rest of the treatise
(and the rest of the vocabulary in the algebra chapter) employs the standard abbreviations of
the epoch and genre, the algebraic technical vocabulary is never abbreviated.27 Even meno,
abbreviated in the coin list, is written in full in the algebra section. Everything here is
rhetorical, there is not the slightest hint of any symbolism. We may probably take this as
evidence that Jacopo was aware of writing about a topic the reader would not know about in

25 The Vatican manuscript can be dated by watermarks to c. 1450, the Milan manuscript in the same way
to c. 1410. The Florence manuscript is undated but slightly more removed from the precursor it has in
common with the Milan manuscript (which of course does not automatically make it younger but
disqualifies it as a better source for the original).

26 Comparing only lists of equation types dealt with in various abbacus algebras and believing in a steady
progress of their number, Warren Van Egmond claims [2008: 313] that the algebra of the Vatican
manuscript “falls entirely within the much later and securely dated Benedetto tradition and was undoubtedly
added to a manuscript containing some sections from JACOPO’S earlier work”. If he had looked at the
words used in the manuscripts he refers to he would have discovered that the Vatican algebra agrees
verbatim with a section of an algebra manuscript from c. 1365, which however fills out a calculational
lacuna left open in the Vatican manuscript and therefore represents a more developed form of the text
(and combines it with other material – details in [Høyrup 2007a: 163f ]). Van Egmond’s dating can be
safely dismissed.

27 There is one instance of (fol. 44r, ed. [Høyrup 2007a: 326]); as the single appearance of in the
Pratica geometrie (see note 17), this is likely to be a copyist’s lapsus calami.
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advance (the book is stated also to be intended for independent study), and that his algebra
is not only the earliest extant Italian algebra but also the first that was written. As we shall
see, however, several manuscripts certainly written later also avoid the abbreviation of algebraic
core terms.

Not only symbolism but also the Maghreb notations for composite fractions are absent
from the treatise, even though they turned up in the Columbia algorism. None the less, Jacopo’s
algebra must be presumed to have its direct roots in the Ibero-Provençal area, with further
ancestry in al-Andalus and the Maghreb; there is absolutely no trace of inspiration from
Fibonacci nor for direct influence of Arabic classics like al-Khwārizmı̄ or Abū Kāmil. Jacopo
offers no geometric proofs but only rules, and the very mixture of commercial and algebraic
mathematics is characteristic of the Maghreb–al-Andalus tradition (as also reflected in the Liber
mahamaleth). A particular multiplicative writing for Roman numerals (for example , usedm

as explanation of the Hindu number 400000) could also be inspired by the Maghreb algebraic
notation (it may as well have been an independent invention, Middle Kingdom Egyptian scribes
and Diophantos also sometimes put the “denomination” above the “coefficient”).

In 1328, also in Montpellier, a certain Paolo Gherardi (as Jacopo, unknown apart from
the name) wrote a Libro di ragioni, known from a later copy (Florence, Bibl. Naz. Centr., Magl.
XI, 87, ed. [Arrighi 1987:13–107]). Its final section is another presentation of algebra.28 Part
of this presentation is so close to Jacopo’s algebra that it must descend either from that text
(by reduction) or from a close source; but whereas Jacopo only deals (correctly) with 20 (of
the possible 22) quadratic, cubic and quartic basic equations (“cases”) that can be solved by
reduction to quadratic equations or by simple root extraction,29 Gherardi (omitting all quartics)
introduces false rules for the solution of several cubics that cannot be solved by these means
(with examples that are “solved” by means of these rules). Comparison with later sources show
that they are not of his own invention. A couple of the cases he shares with Jacopo also differ
from him in their choice of examples while corresponding to types that can be found in a slightly
later Provençal treatise (see imminently).

Gherardi’s algebra is almost as rhetorical as Jacopo’s, but not fully. Firstly, the abbreviation
is used copiously though not systematically. This may be due to the copyist – the effort of

Jacopo’s and Fibonacci’s copyists to conserve the features of the original was no general rule;

28 Apart from Arrighi’s complete edition of the treatise [1987: 97–107], there is an edition of the algebra
text with translation and mathematical commentary in [Van Egmond 1978].

29 The lacking equations are the two mixed biquadratics that correspond to al-Khwārizmı̄’s (and Jacopo’s)
fifth and sixth case. Only the six simple cases (linear and quadratic) are provided with examples – ten
in total, half of which are dressed as commercial problems. For the others, only rules are offered.
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but it could also correspond to Gherardi’s own text. More important is the reference to a diagram
in one example (100 is first divided by some number, next by five more, and the sum of the
quotients is given; this diagram is actually missing in the copy, but so clearly described in the
text that it can be seen to correspond to the diagram found in a parallel text:30

The operations performed on the diagram (“cross-multiplication” and all the other operations
needed to add fractions) are described in a way that implies underlying operations with the
“formal fractions” and .100

1 cosa
100

1 cosa piu 5

Such formal fractions, we may observe, constitute an element of “symbolic algebra” that
does not presuppose that “cosa” itself be replaced by a symbol, but certainly an isolated element
only. It must be acknowledged, on the other hand, that this isolated element already made
possible calculations that were impossible within a purely rhetorical framework. Jacopo, as
already al-Khwārizmı̄, could get rid of one division by a binomial via multiplication. However,
problems of the type where Gherardi and later abbacus algebra use two formal fractions were
solved geometrically by al-Khwārizmı̄, Abū Kāmil and Fibonacci, as I discuss in a forthcoming
paper.31

A third abbacus book written in Provence (but in Avignon) is the Trattato di tutta l’arte
dell’abbacho. As shown by Jean Cassinet [2001], it must be dated to 1334. Cassinet also shows
that the traditional ascription to Paolo dell’Abbaco is unfounded.32 Exactly how much should
be counted to the treatise is not clear. The codex Florence, Bibl. Naz. Centr., fond. princ. II.IX.57
(the author’s own draft according to [Van Egmond 1980: 140]) contains a part that is not found
in the other copies33 but which is informative about algebra and algebraic notation; however,
since this extra part is in the same hand as the main treatise [Van Egmond 1980: 140], it is
unimportant whether it went into what the author eventually decided to put into the finished
treatise.

30 Florence, Ricc., 2252, see [Van Egmond 1978: 169].

31 “‘Proportions´ in the Liber abbaci”, to appear in the proceedings of the meeting
“Proportions: Arts – Architecture – Musique – Mathématiques – Sciences”, Centre d’Études Supérieures
de la Renaissance, Tours, 30 juin au 4 juillet 2008.

32 Arguments speaking against the ascription are given in [Høyrup 2008a: 11 n. 29].

33 I have compared with Rome, Acc. Naz. dei Lincei, Cors. 1875, from c. 1340. For other manuscripts,
see [Cassinet 2001] and [Van Egmond 1980, passim].
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There is no systematic presentation of algebra nor listing of rules in this part,34 only a
number of problems solved by a rhetorical censo-cosa technique.35 The author uses no
abbreviations for cosa, censo and radice – but at one point (fol. 159r) an astonishing notation
turns up: , meaning “10 cose”. The idea is the same as we encountered in the Columbia10

cose

Algorism when it writes meaning “1 gran ”: that what is written below the line is a1 1
gran 2

1
2

denomination; indeed, many manuscripts write “il ” in the sense of “the third” (as ordinal1
3

number as well as fraction) – that is, the notation for the fraction was understood as an image
of the spoken form, not of the division procedure (cf. also the writing of quinte as in thee

5

Liber mahamaleth, see note 15).
The compiler of Trattato di tutta l’arte was certainly not the first to use this algebraic

notation – who introduces a new notation does not restrict himself to using it a single time
in a passage well hidden in an odd corner of a text. He just happens to be our earliest witness
of a notation which for long was in the way of the development of a notation that could serve
symbolic calculation.

This compiler was, indeed, not only not the first but also not the last to use this writing
of monomials as quasi-fractions. It is used profusely in Dardi of Pisa’s Aliabraa Argibra from
1344,36 better known for being the first Italian-vernacular treatise dedicated exclusively to algebra
and for its presentation of rules for solving no less than 194+4 algebraic cases, 194 of which
are solved correctly (with two slips, explained by Van Egmond [1983: 417]), while the rules

34 The codex contains a list of four rules (fol. 171v), three provided with examples, written on paper from
the same years (according to the watermark) but in a different hand than the recto of the sheet and thus
apparently added by a user of the manuscript. It contains one of the examples which Gherardi had not
borrowed from Jacopo, confirming that his extra examples came from what circulated in the Provençal
area. It contains no algebraic abbreviations nor anything else suggesting symbolism.

35 Jean Cassinet [2001: 124–127] gives an almost complete list.

36 See [Van Egmond 1983]. The three principal manuscripts are Vatican, Chigi M.VIII.170 written in
Venetian in c. 1395; Siena, Biblioteca Comunale I.VII.17 from c. 1470 [ed. Franci 2001]; and a manuscript
from Mantua written in 1429 and actually held by Arizona State University Temple, which I am grateful
to know fromVan Egmond’s personal transcription. In some of the details, the Arizona manuscript appears
to be superior to the others, but at the level of overall structure the Chigi manuscript is demonstrably
better – see [Høyrup 2007a: 169f ]. Considerations of consistency suggests it to be better also in its use
of abbreviations and other quasi-symbolism, for which reason I shall build my presentation on this
manuscript (cross-checking with the transcription of the Arizona-manuscript – differences are small); for
references I shall use the original foliation.

A fourth manuscript from c. 1495 (Florence, Bibl. Med.-Laur., Ash. 1199, partial ed. [Libri 1838:
III, 349–356]) appears to be very close to the Siena manuscript.

A critical edition of the treatise should be forthcoming from Van Egmond’s hand.
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for the last four cases are pointed out by Dardi to hold only under particular (unspecified)
circumstances.37

Dardi uses algebraic abbreviations systematically. Radice is always , meno (“less”) is
, cosa is c, censo is ç, numero/numeri are nũo/nũi. Cubo is unabridged, censo de censo (the

fourth power) appears as ç de ç (an expanded linguistic form which we may take as an indication
that Dardi merely thinks in terms of abbreviation and nothing more). Roots of composite entities
are written by a partially rhetorical expression, for instance (fol. 9v) “ de zonto cô de1

4

12” (zonto corresponds to Tuscan gionto, “joined”).
As just mentioned, Dardi also employs the quasi-fraction notation for monomials, and does

so quite systematically in the rules and the examples (but only here).38 When coefficients are
mixed numbers Dardi also uses the formalism systematically in a way which suggests ascending
continued fractions, writing for instance 2 c not quite as but as (which however could1

2
2 1
c 2

2
c
1
2

also mean simply “2 censi and ”. Often, a number term is written as a quasi-fraction, for1
2

example as . How far this notation is from any operative symbolism is revealed by the way325
n

multiples of the censo de censo are sometimes written – namely for example as de ç (fol.81
ç

46v).
None the less, symbolic operations are not absent from Dardi’s treatise. They turn up when

he teaches the multiplication of binomials (either algebraic or containing numbers and square
roots) – for instance, for (3–√5) (3–√5),

.
Noteworthy is also Dardi’s use of a similar scheme

as support for in his proof of the sign rule “less times less makes plus” on fol. 5v:

Now I want to demonstrate by number how less times less makes plus, so that every times you have
in a construction to multiply less times less you see with certainty that it makes plus, of which I
shall give you an obvious example. 8 times 8 makes 64, and this 8 is 2 less than 10, and to multiply
by the other 8, which is still 2 less than 10, it should similarly make 64. This is the proof. Multiply

37 Dardi reaches this impressive number of resolvable cases by making ample use of radicals.

38 This notation appears only to be present in the Chigi and Arizona manuscripts; Franci does not mention
them in her edition of the much later Siena manuscript, and composite expressions where their presence
might be revealed show no trace of them. They are also absent from Guglielmo Libri’s extract of the
Florence manuscript.
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10 by 10, it makes 100, and 10 times 2 less makes 20 less, and the other 10 times 2 less makes 40
less, which 40 less detract from 100, and there remains 60. Now it is left for the completion of the
multiplication to multiply 2 less times 2 less, it amounts to 4 plus, which 4 plus join above 60, it
amounts to 64. And if 2 less times two less had been 4 less, this 4 less should have been detracted
from 60, and 56 would remain, and thus it would appear that 10 less 2 times 10 less two had been
56, which is not true. And so also if 2 less times 2 less had been nothing, then the multiplication
of 10 less 2 times 10 less 2 would come to be 60, which is still false. Hence less times less by
necessity comes to be plus.

As we shall see, such schemes were no more Dardi’s invention than the quasi-fraction notation
(even though he may well have been more systematic in the use of both than his precursors).

The best source for this is an anonymous Trattato dell’alcibra amuchabile from c. 1365
[ed. Simi 1994], contained in the codex Florence, Ricc. 2263. This is the treatise referred to
in note 26, part of which agrees verbatim with Jacopo’s algebra. It also has the false rules of
Gherardi, but not verbatim, showing Gherardi not to be the immediate source (a compiler who
copies one source verbatim will not use another one freely) – cf. [Høyrup 2007a: 163].

The treatise consists of several parts. The first presents the arithmetic of monomials and
binomials, the second contains rules and examples for 24 algebraic cases (mostly shared with
Jacopo or Gherardi), the third a collection of 40 algebraic problems. All seem to be purely
rhetorical in formulation.39 However, the first and third part contain the same kinds of non-
verbal operations as we have encountered in Gherardi and Dardi, and throws more light on
the former.

In part 3, there are indeed a number of additions of formal fractions, for example (this
one is in problem #13) . This is shown as100

1cosa
100

1cosa 5

100 100
per una cosa per una cosa e 5

and explained with reference to the parallel + (cross-multiplication of denominators with24
4

24
6

numerators followed by addition, multiplication of denominators, etc.). Gherardi’s small scheme
(see just after note 30) must build on the same insights.

Part 1 explains the multiplication of binomials with schemes similar to those used by

39 I have not seen the manuscript, and Annalisa Simi does not say whether she has expanded algebraic
abbreviations; however, if she had done so, I expect she would have mentioned it; further, a statistical
analysis shows that the ratio between spellings chosa/chose and spellings cosa/cose coincides (within
statistical uncertainties) with that between chosi and cosi, which speaks against an editorial normalization.
I would finally expect an expansion of to be radice, totally absent from the treatise, and not radicie
(c. 200 occurrences).
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Dardi – for example

.
As we see, the scheme is very similar to those of Dardi but more rudimentary. There is thus
no reason to suppose it should be borrowed from Dardi’s earlier treatise – influence from which
is on the whole totally absent. Schemes of this kind must hence have been around in the
environment or in the source area for early abbacus algebra before 1340, just as the calculation
with formal fractions must have been around before 1328, and the quasi-fractions for monomials
before 1334.40 On the whole, this tells us how far the development of algebraic symbolic
operations had come in abbacus algebra in the early fourteenth century – and that all that was
taken over from the Maghreb symbolism was the calculation with formal fractions; a very
dubious use of the ascending continued fractions; and possibly the idea of presenting radice,
cosa and censo by single-letter abbreviations (implemented consistently by Dardi but not broadly,
and not necessarily a borrowing).

Figure 5

Vat 10488
ligninger

The “equations” from VAT 10488
fol. 37r (top) and fol. 39v (bottom).

The decades around 1400

The Venetian manuscript Vatican, Vat. lat. 10488
(Alchune ragione), written in 1424, connects the early
phase of abbacus algebra with its own times. The manu-
script is written by several hands, but clearly as a single
project (hands may change in the middle of a page; we
may perhaps think of an abbacus master and his assist-
ants). From fol. 29v to fol. 32r it contains a short intro-
duction to algebra, according to the text written by
Giovanni di Davizzo (a member of a well-known Florentine abbacist family, see [Ulivi 2002:
39, 197, 200]) in 1339. At first come sign rules and rules for the multiplication of algebraic
powers, next a strange section with rules for the division of algebraic powers where roots take
the place of negative powers;41 then a short section about the arithmetic of roots (including

40 This latter presence leads naturally to the question whether the notation in the al-Khwārizmı̄–redaction
from c. 1300 should belong to the same family. This cannot be excluded, but the absence of a fraction
line speaks against it. Inspiration from the Maghreb notation (and even independent invention) remain
more plausible.

41 An edition, English translation and analysis of this initial part of the introduction can be found in [Høyrup
2007c: 479–484].
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binomials containing roots)42 somehow but indirectly pointing back to al-Karajı̄: and finally
20 rules for algebraic cases without examples, of which one is false and the rest parallel to
those of Jacopo (not borrowed from him but sharing his source tradition). Everywhere, radice
appears as , but “less”, cosa and censo all appear unabbreviated (censomostly as zenso, which
cannot have been the Florentine Giovanni’s spelling).

This introduction comes in the middle of a long section containing number problems mostly
solved by means of algebra (many of them about numbers in continued proportion).43 Here,
abbreviations abound. Radice is always , meno is often , or (different shapes may
occur in the same line). More interesting, however, is the frequent use of co, (occasionally
ce) and no written above the coefficient, precisely as in the Maghreb notation (and quite likely
inspired from it). However, these notations are not used systematically, and only used once
for formal calculation, in a marginal “equation” (two formal fractions which are equal; the hand
seems to be the same as that of the main text and of marginal notes adding words that were
omitted during copying) without equation sign on fol. 39v – see Figure 5, bottom.44 In another
place (fol. 37r, Figure 5 top) the running text formulates a genuine equation, but this is merely
an abbreviation for 100 è 1 censo meno 20 cose which serves within the rhetorical argument;
it is not operated upon.

Later in the text comes another extensive collection of problems solved by means of algebra
(some of them number problems, others dressed as business problems), and inside it another
collection of rules for algebraic cases (17 in total, only 2 overlapping the first collection). In
its use of abbreviations, this second cluster of problems and rules is quite similar to the first
cluster, the only exception being a problem (fol. 95r–96v, see Figure 6) where the use of
coefficients with superscript power is so dense that it may possible have facilitated understanding
of the argument by making most of the multiples of cosa and censo stand out visually.

It is fairly obvious that this casual use of what could be a symbolism was not invented
by the compilers of the manuscript, and certainly not something they were experimenting with.
They used for convenience something which was familiar, without probing its possibilities.

42 Translation in [Høyrup 2007b: 10].

43 Even these are borrowed en bloc, as revealed by a commentary within the running text on fol. 36r, where
the compiler tells how a certain problem should be made al parere mio, “in my opinion”. The several
hands of the manuscripts are thus not professional scribes who do not follow the argument of what they
copy.

44 The treatment of the problem is quite interesting. The problem asks for a number which, when divided
into 10 yields 5 times the same number and 1 more. Instead of writing “ = e 1 piu” it expresses10

co
1

co
5

the right-hand side as a fraction , thus opening the way to the usual cross-multiplication.
co
5 e 1 piu

1
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If anybody else in the abbacus environment had used the notation as a symbolism and not merely

Figure 6

Vat lat 10488_95r

A problem from Vat. lat. 10488 fol. 95r (continues on fol. 96v).

as a set of abbreviations (and the single case of an equation between formal fractions suggests
that this was the case), then the compilers of the present manuscript have not really discovered –
or they reveal, which may be more interesting, that the contents of abbacus algebra did not
call for and justify the effort needed to implement a symbolism to which its practitioners were
not accustomed.45 They might almost as well have used Dardi’s quasi-fractions – only in the

45 The latter proviso is needed. For us, accustomed as we are to symbolic algebra, it is mostly much easier
to follow an abbacus texts if we make symbolic notes on a sheet of paper.
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equation between formal fractions would the left-hand side have collided with it by meaning
simply “10 cose”.

Though not really using the notation as a symbolism, the compilers of Vat. lat. 10488 at
least show that they knew it. However, this should not make us believe that every abbacus
algebra from the same period was familiar with the notation, or at least not that everybody
adopted it. As an example we may look at two closely related manuscripts coming from Bologna,
one (Palermo, Biblioteca Comunale 2 Qq E 13, Libro merchatantesche) written in 1398, the
other (Vatican, Vat. lat. 4825, Tomaso de Jachomo Lione, Libro da razioni) in 1429.46 They
both contain a list of 27 algebraic cases with examples followed by a brief section about the
arithmetic of roots (definition, multiplication, division, addition and subtraction). The former
has a very fanciful abbreviation for meno, namely , which corresponds, however, to the
way che and various other non-algebraic words are abbreviated, and is thus merely a personal
style of the scribe; the other writes meno in full, and none of the two manuscripts have any
other abbreviation whatsoever of algebraic terms – not even for radice which they are likely
to have known, which suggests but does not prove that the other abbreviations were also avoided
consciously.

Maybe we should not be surprised not to find any daring development in these two
manuscripts. In general, they offer no evidence of deep mathematical insight. In this perspective,
the manuscript Florence, Bibl. Naz. Centr., fondo princ. II.V.152 (Tratato sopra l’arte della
arismetricha) is more illuminating. Its algebraic section was edited by Franci and Pancanti
[1988].47 It was written in Florence in c. 1390, and offers both a clear discussion of the
sequence of algebraic powers as a geometric progression and sophisticated use of polynomial
algebra in the transformation of equation types – see [Høyrup 2008a: 30–34].

In the running text, there are no abbreviations nor anything else which foreshadows
symbolism. However, inserted to the left we find a number of schemes explained by the text
and showing multiplication of polynomials with two or three terms (numbers, roots and/or
algebraic powers), of which Figure 7 shows some examples – four as rendered by Franci and
Pancanti, the last of these also as appearing in the manuscript.

Those involving only binomials are easily seen to be related to what we find in the Trattato
dell’alcibra amuchabile and in Dardi’s Aliabraa Argibra – but also to schemes used in non-
algebraic sections of other treatises, for instance the Palermo-treatise discussed above, see

46 More precisely, 7March 1429 – which with year change at Easter means 1430 according to our calendar,
the date given in [Van Egmond 1980: 223].

47 I have controlled on a scan of a microfilm, but since it is almost illegible my principal basis for discussing
the treatise is this edition.
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Figure 8, which should warn us against seeing any direct connection.

Figure 7

schemes from Franci-Pancanti

Schemes for the multiplication of polynomials, from [Franci & Pancanti 1988: 8–12], and
from the manuscript, fol. 146v.

The schemes for the multiplication of three-term polynomials are different. They emulate
the scheme for multiplying multidigit numbers, and the text itself justly refers to the multiplica-
tion a chasella [ed. Franci & Pancanti 1988: 9]. This version of the algorithm uses vertical
columns, while the scheme for multiplying polynomials used in the Jerba manuscript [ed.
Abdeljaouad 2002: 47] follows the older algorithm a scacchiera with slanted columns; none
the less inspiration from the Maghreb is plausible, in particular because another odd feature

- 25 -



of the manuscript suggests a pipeline to the Arabic world. In a wage problem, an unknown

Figure 8

Palermo-skema

Non-algebraic scheme from Palermo, Biblioteca Comunale 2 Qq E 13, fol. 38v.

amount of money is posited to be a censo, whereas Biagio il vecchio [ed. Pieraccini 1983:
89f ] posits it to be a cosa in the same problem. But the present author does not understand
that a censo can be an amount of money, and therefore feels obliged to find its square root –
only to square it again to find the solution. He thus uses the terminology without understanding
it, and therefore cannot have invented it himself; nor can the source be anything of what we
have discussed so far.

Schemes of this kind (and other schemes for calculating with polynomials) turn up not
only in later abbacus writings (for instance, in Raffaello Canacci, see below) but also in Stifel’s
Arithmetica integra [1544: 3vff ], in Jacques Peletier’s L’Algèbre [1554: 15–22] and in Petrus
Ramus’s Algebra [1560: A iiir].

Returning to the schemes of the present treatise we observe that the cosa is represented
(within the calculations, not in the statement lines) by something looking like ρ, and the censo
by c. Radice is in statement as well as calculation. The writing of meno is not quite system-
atic – whether it is written in full, abbreviated me or (m. in the edition) seems mostly to
depend on the space available in the line. All in all, the writer can be seen to have taken
advantage of this incipient symbolism but not to have felt any need to use it systematically –
it stays on the watershed, between facultative abbreviation and symbolic notation.

The mid-fifteenth-century abbacus encyclopediae

Around 1460, three extensive “abbacus encyclopediae” were written in Florence. Most
famous among these is, and was, Benedetto da Firenze’s Trattato de praticha d’arismetrica –
it is the only one of them which is known from several manuscripts.48

Earliest of these is Siena, Biblioteca Comunale degli Intronati, L.IV.21, which I have used

48 On Benedetto and his historical setting, see the exhaustive study in [Ulivi 2002].
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together with the editions of some of its books.49 According to the colophon (fol. 1r) it was
“conpilato da B. a uno suo charo amicho negl’anni di Christo MCCCCLXIII”. It consists of
495 folios, 106 of which deal with algebra.

The algebra part consists of the following books:
– XIII, Benedetto’s own introduction to the field, starting with a 23-lines’ excerpt from

Guglielmo de Lunis’s lost translation of al-Khwārizmı̄. Then follows a presentation of the
six fundamental cases with geometric proofs, built on al-Khwārizmı̄; a second chapter on
the multiplication and division of algebraic powers (nomi, “names”) and the multiplication
of binomials; and a third chapter containing rules and examples for 36 cases (none of them
false);

– XIV, a problem collection going back to Biagio il vecchio († c. 1340 according to
Benedetto);

– XV, containing a translation of the algebra chapter from the Liber abbaci, provided with
“some clarifications, specification of the rules in relation to the cases presented in book
XIII, and the completion of calculations, which the ancient master had often neglected,
indicating only the result” [Franci & Toti Rigatelli 1983: 309]; a problem collection going
back to Giovanni di Bartolo (fl. 1390–1430, a disciple of Antonio de’ Mazzinghi); and
Antonio de’ Mazzinghi’s Fioretti from 1373 or earlier [Ulivi 1998: 122].

The basic problem in using this manuscript is to which extent we can rely on Benedetto as
a faithful witness of the notations and possible symbolism of the earlier authors he cites. A
secondary problem is whether we should ascribe to Benedetto himself or to a later user a number
of marginal quasi-symbolic calculations.

Regarding the first problem we may observe that there are no abbreviations or any other
hints of incipient symbolism in the chapters borrowed from Fibonacci and al-Khwārizmı̄. This
suggests that Benedetto is a fairly faithful witness, at least as far as the presence or absence
of such things is concerned. On the other hand it is striking that the symbols he uses are the
same throughout; this could mean that he employed his own notation when rendering the
notations of others, but could also be explained by the fact that all the abbacists he cites from
Biagio onward belong to his own school tradition – as observed by Raffaella Franci and Laura
Toti Rigatelli [1983: 307], the Trattato is not without “a certain parochialism”.

Marginal calculations along borrowed problems can obviously not be supposed a priori
to be borrowed, and not even to have been written by the compiler. However, the marginal

49 [Salomone 1982]; [Pieraccini 1983]; [Pancanti 1982]; [Arrighi 1967]. All of these editions were made
from the same Siena manuscript, which is also described in detail with extensive extracts in [Arrighi
2004/1965].

- 27 -



calculations in the algebraic chapters appear to

Figure 9

Antonio
marginalberegning

A marginal calculation accompanying the
same problem from Antonio’s Fioretti in
Siena L.IV.21, fol. 456r and Ottobon. lat.
3307, fol. 338v.

be made in the same hand as marginal calcula-
tions and diagrams for which partial space is
made in indentions in book XIII, chapter 2 as
well as in earlier books of the treatise. Often, the
irregular shape of the insertion shows these
earlier calculations and diagrams to have been
written before the main text, cf. fol. 263v as
shown in Figure 10.50 This order of writing
shows that the manuscript is Benedetto’s origin-
al, and that he worked out the calculations while
making it – in particular because the marginal calculations are never indented in the algebra
chapters copied from earlier authors.

Comparison of the marginal calculations accompanying the problem in the excerpt from
Antonio’s Fioretti and the same problem as contained in the manuscript Vatican, Ottobon. lat.
3307 from c. 1465 show astonishing agreement, proving that these calculations were neither
made by a later user nor invented by Benedetto and the compiler of the Vatical manuscript.
In principle, the calculations in the two manuscripts could have been added in a manuscript
of the Fioretti that had been written after Antonio’s time and on which both encyclopedias
build; given that the encyclopedias do not contain the same selection it seems reasonable,
however, to assume that they reflect Antonio’s own style – not least, as we shall see, because
we are not far from what can be found in the equally Florentine Tratato sopra l’arte della
arismetricha c. 1390, discussed around note 47.

What Benedetto does when he approaches symbolism can be summed up as follows: He
uses ρ (often a shape more or less like ) and (much less often) c or c° for cosa respectively
censo (and their plurals), but almost exclusively within formal fractions.51 Even in formal
fractions, censomay also be written in full.Meno is mostly abbreviated in formal fractions.
Radice may be abbreviated in the running text, but often, and without system, it is left

50 Figure 10 shows a particularly striking case, and contains calculations for a particularly complicated
problem dealing with two unknowns, a borsa, [the unknown contents of a] “purse”, and a quantità, the
share received by the first of those who divide its contents.

51 Outside such fractions, I have noticed ρ three times in the main text of the Fioretti, viz on fols. 453r,
469r and 469v (of which the first occurrence seems to be explained by an initial omission of the word
chosa leaving hardly space for the abbreviation), and c° once, on fol. 458r. Arrighi [1967: 22] claims another
c° on fol. 453r, but the manuscript writes chosa in the corresponding place.
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Figure 10

Benedetto
263v

Siena, L.IV.21, fol. 263v.
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unabridged; within formal fractions, where there is little space for the usual abbreviation, it
may become r or ra. Both when written in full and when appearing as , it may be encircled
if it is to be taken of a composite expression. In later times (e.g., in Pacioli’s Summa, see below)
this root was to be called radice legata or radice universale; the use of the circle to indicate
it goes back at least to Gilio of Siena’s Questioni d’algebra from 1384 [Franci 1983: xxiii],
and presumably to Antonio, since Gilio’s is likely to have been taught by him, or at least to
have known his works well (ibid. p. ivf). The concept itself was expressed by Dardi as “ de
zonto ... con ...”, close in meaning to radice legata.

All of this suggests that the “symbolism” is only a set of facultative abbreviations, and
not really an incipient symbolism. However, in a number of marginal calculations it does serve
as carrier of the reasoning. One example was shown in Figure 9, another one (fol. 455r, see
Figure 11) performs a multiplication which, in slightly mixed notation, looks as follows:

(1ρ [13 1 c])×(1ρ p[iù] [13 1 c])1
2

1
2

Formal fractions without abbreviation are used in the

Figure 11

Benedetto
455r

The multiplication of
(1ρ–√[1311/2–1c]) by (1ρ+√[131/2–1c])

arithmetic of algebraic powers in Book XIII (fol.
372r–373r). At first in this piece of text we find

Partendo chose per censi ne viene rotto nominato da
chose chome partendo 48 chose per 8 censi ne viene 6

1 chosa

.
in translation

Dividing things by censi results in a fraction denomi-
nated by things, as dividing 48 things by 8 censi results
in .

6
1 chosa

Afterwards we find denominators “1 censo”, “1 cubo”, “1 cubo di censo”, etc. When addition
of such expressions and the division by a binomial are taught, we also find denominators like
“3 cubi and 2 cose”.52

Long before we come to the algebra, namely on fol. 259v–260v, there is an interesting
occurrence of formal fractions in problems of combined works, involving not a cosa or a censo

52 This whole section looks as if it was inspired by al-Karajı̄ or the tradition he inaugurated; but more
or less independent invention is not to be excluded: once the notation for fractions is combined with interest
in the arithmetic of algebraic monomials and binomials things should go by themselves.
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but a quantità – such as and .53 These fractions are written without any8
1 quantità

1 quantità meno 8
1 quantità

abbreviation.54 Together with the explanation of the division of algebraic powers they
demonstrate (as we already saw it in the Trattato dell’alcibra amuchabile) that the use of and
argumentation on formal fractions does not depend on the presence of standard abbreviations
for the unknown (even though calculations involving products of unknown quantities become
heavy without standard abbreviations).

The manuscript Vatican, Ottobon. lat. 3307, was already mentioned above.55 It was also
written in Florence, dates from c. 1465, and is also encyclopedic in character but somewhat
less extensive than Benedetto’s Trattato de praticha d’arismetrica, of which it is probably
independent in substance.56 It presents itself (fol. 1r) as Libro di praticha d’arismetrica, cioè
fioretti tracti di più libri facti da Lionardo pisano – which is to be taken cum grano salis,
Fibonacci is certainly not the main source.

Judged as a mathematician (and as a Humanist digging in his historical tradition), the present
compiler does not reach Benedetto’s level. However, from our present point of view he is very
similar, and the manuscript even presents us with a couple of innovations (which are certainly
not of the compiler’s own invention).

Even in this text, margin calculations are often indented into the text in a way that shows
that they were written first, indicating that it is the compiler’s autograph.57 Already in an
intricate problem about combined works (not the same as Benedetto’s, but closely related) use
is made of formal fractions involving an unknown quantità. In the present case, even the square

53 Benedetto would probably see these solutions not as applications of algebra but of the regula recta –
which he speaks of as modo retto/repto/recto in the Tractato d’abbaco, ed. [Arrighi 1974: 153, 168, 181],
everywhere using quantità for the unknown.

54 However, in the slightly later problem about a borsa and a quantità mentioned in note 50, these are
abbreviated in the marginal computations – presumably not only in order to save space (already a valid
consideration given how full the page is) but also because it makes it easier to schematize the calculations.

55 Description with extracts in [Arrighi 2004/1968].

56 The idea of producing an encyclopedic presentation of abbacus mathematics may of course have been
inspired by Benedetto’s Trattato – unless the inspiration goes the other way, the dating “c. 1465” is based
on watermarks [Van Egmond 1980: 213] and only approximate. If the present compiler emulated Benedetto,
one might perhaps expect him to indicate in a heading, as does Benedetto, when he brings a whole sequence
of problems borrowed from Antonio. In consequence, I tend to suspect that the Ottoboniano manuscript
precedes Benedetto’s Trattato.

57 This happens seven times from fol. 48v to fol. 54v. On fol. 176v and 211v there are empty indentions,
but these are quite different in character, wedge-shaped and made in the beginning of problems, and thus
expressions of visual artistry and not proof that the earlier indentions were made as empty space while
the text was written and then filled out afterwards by the compiler or a user.
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of the quantità turns up, as quantità di quantità.
When presenting the quotients between powers, the compiler writes the names of powers

in full within the formal fractions, just as Benedetto. The details of the exposition show beyond
doubt, however, that the compiler does not copy Benedetto but that both draw on a common
background. In the present treatise, the first fractional power is introduced like this (fol. 304v):

Partendo dramme per chose ne viene un rocto denominato da chose, chome partendo 48 dramme
per 6 chose ne viene questo rotto cioè .48 dramme

1 chosa

The second example makes the same numerical error. From the third example onward, it has
disappeared. The fourth one looks as follows (fol. 305r):

Partendo chose per chubi ne viene rotto nominato da chubi, come partendo 48 chose per 6 chubi,
ne viene questo rotto, cioè .8 chose

1 chubo

Only afterwards is the reduction (schifare) of the ratio between powers (schifare) introduced,
for instance, that is .8 chose

1 chubo
8 dramme
1 censo

Abbreviations for the powers are absent not only from this discussion but also from the
presentation of the rules. When we come to the examples, however, marginal calculations with
binomials expressed by means of abbreviations abound. That for cosa changes between ρ and
, that for censo between c (written ) and σ (actually ); in both cases the difference is
simply the length of the initial stroke; since all intermediate shapes are present, a single
grapheme is certainly meant for cosa as well as censo. c° appears to be absent. The marginal
calculations mostly have the same character as those of Benedetto, cf. Figure 9; in the running
text abbreviations are reserved for formal fractions and otherwise as absent as in Benedetto’s
Trattato.

On two points the present manuscript goes slightly

Figure 12

Ottobon
cubi...

The marginal note from Ottobon.
lat. 3307 fol. 309r

beyond Benedetto. Alongside a passage in the main text
which introduces to cases involving cubi and censi di
censi (fol. 309r), the margin contains the note shown in
Figure 12. n° being numero and the superscript square
being known (for instance from Vat. lat. 10488, cf. above)
to be a possible representative for censo, it is a reasonable assumption (which we shall find
fully confirmed below) that the triangle stands for the cube and the double square for censo
di censi, the whole diagram thus being a pointer to the equation types “cubi and censi di censi
equal number” and “censi and cubi are equal to number”. We observe that equality is indicated
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by a double line.58 As we shall see imminently, the compiler and several other fifteenth-century
writers indicate equality by a single line. This, as well as the deviating symbols for the powers,
suggests that this particular note was made by a later user of the manuscript;.

The other innovation can be safely ascribed to the hand of the compiler. It is a marginal
calculation found on fol. 331v, alongside a problem = 40 (these formal fractions,100

1ρ
100
1ρ 7

without + and =, stand in the text). The solution follows from a transformation =100ρ 100 (ρ 7)
(1ρ) (1ρ 7)

= 40, whence 200ρ+700 = 40σ+280ρ; in the margin, the same solution is given100ρ (100ρ 700)
1σ 7ρ

schematically:

100ρ

Figure 13
The confrontation sign of Ottobon.

100ρ 700

200ρ 700

1σ 7ρ 40

200ρ 700 ——— 40σ 〈280ρ 〉

(the omitted 〈280ρ〉 in the last line is present within
the main text. The strokes before 40 and 40σ appear
to be meant as equation signs. It might be better,
however, to understand them as all-purpose “confrontation signs” – in the margin of fol. 338r,
——— means that one commercial partner has , the other (see Figure 13).593000

1ρ 5000
4000
1ρ 6000

This is one of Antonio’s problems. In Benedetto’s manuscript, we find the same problem
and the same diagram on fol. 456r – with the only difference that the line is replaced by an
X indicating the cross-multiplication that is to be performed. The “confrontation line” is thus
not part of the inheritance from Antonio (nor, in general, from the inheritance shared with
Benedetto). Though hardly due to the present compiler, it is an innovation.

The reason to doubt the innovative role of our compiler is one of Regiomontanus’s notes
for the Bianchini correspondence from c. 1460 [ed. Curtze 1902: 278]. For the problem

= 40, he uses exactly the same scheme, including the “confrontation line”:100
1ρ

100
1ρ 8

58 The double line is also used for equality in a Bologna manuscript from the mid-sixteenth century
reproduced in [Cajori 1928: I, 129]; whether Recorde’s introduction of the same symbol in 1557 was
independent of this little known Italian tradition is difficult to decide.

59 In later sources I have only seen the line used to indicate the confrontation of equals, but a thorough
search would be required to be certain that no exceptions occur, and that the line was really understood
as an equation sign.
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100
1 ρ

100
1 ρ et 8

100 ρ et 800

100 ρ

200 ρ et 800 ——— 40
1 ρ et 8 σ

40 σ et 320 ρ ——— 200 ρ et 800

40 σ et 120 ρ ——— 800

1 σ et 3 ρ ——— 20

(Regiomontanus extends the initial stroke of ρ even more than our compiler, to ; his variant
of σ, census, is , possibly a different extension of c60).

A third Florentine encyclopedic abbacus treatise is Florence, Bibl. Naz. Centr., Palat. 573.61

Van Egmond [1980: 124] dates it to c. 1460 on the basis of dates contained in problems, but
since the compiler refers (fol. 1r) to Benedetto’s Trattato (from 1463) as having been made
“already some time ago” (già è più tenpo), a date around 1470 seems more plausible. This is
confirmed by the watermarks referred to by Van Egmond – even this manuscript can be seen
frommarginal calculations made before the writing of the main text to be the compiler’s original,
whose date must therefore fit the watermarks.

As regards algebraic notations and incipient symbolism, this treatise teaches us nothing
new. It does not copy Benedetto (in the passages I checked) but does not go beyond him in
any respect; it uses the same abbreviations for algebraic powers, in marginal calculations and
(sparingly) in formal fractions within the main text – including the encircled radice and . In
the chapter copying Fibonacci’s algebra it has no marginal calculations (only indications of
forgotten words), which confirms that the compilers of the three encyclopedic treatises copied
the marginal calculations and did not add on their own, at least when copying venerated
predecessors mentioned by name.

60 Curtze does not show these forms in his edition, but see [Cajori 1928: I, 95].

61 Described with sometimes extensive extracts of the beginnings of all chapters in [Arrighi 2004/1967]
.
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Late fifteenth-century Italy

The three encyclopediae confirm that no deliberate effort to develop notations or to extend
the range of symbolic calculation was present in the mid-century Italian abbacus environment –
not even among those masters who, like Benedetto and the compiler of Palat. 573, reveal
scholarly and Humanist ambitions by including such matters as the Boethian names for ratios
in their treatises and by basing their introduction of algebra on its oldest author (al-Khwāriz-
mı̄).62 The experiments and innovations of the fourteenth century – mostly, so it seems, vague
reflections of Maghreb practices – had not been developed further.63 In that respect, their
attitude is not too far from that of mid-fifteenth–century mainstream Humanism.

Towards the end of the century, we have evidence of more conscious exploration of the
potentialities of symbolic notations. A first manuscript to be mentioned here is Modena, Bibl.
Estense, ital. 578 from c. 1485 (L’agibra; according to the orthography written in northern Italy –
e.g., zonzi and mazore where Tuscan normal orthography would have giongi and magiore).
It contains (fol. 5r–20r) an algebra, starting with a presentation of symbols for the powers with
a double explanation, first with symbols and corresponding “degrees”, gradi (fol. 5r), next by
symbols and signification (fol. 5v) – see Figure 14

As we see, the symbol for the cosa is the habitual c. For the censo, z is used, in agreement
with the usual northern orthography zenso; the cubo is Q, the censo di censi is z di z. The fifth
power is c di zz, obviously meant as a multiplicative composition (as the traditional cubo di
censo), the sixth instead z di Q, that is, composed with embedding. The seventh degree is c
di z di Q, mixing the two principles, the eight again made with embedding as z di zz. So is
the ninth, QQ.

Then follow the significations. c is “that which you find”, z “the root of that”, Q “the cube
root of that”, and z di z “the root of the root of that”. Already now we may wonder – why
“roots”? I have no answer, but discuss possible hints in [Høyrup 2008a: 31], in connection with
the Tratato sopra l’arte della arismetricha (see just before note 47), from where these “root-
names” are known for the first time. It is reasonable to assume a connection – this Tratato has
the same mixture of multiplicative and embedding-based formation of the names for powers,

62 Benedetto [ed. Salomone 1982: 20] gives this argument explicitly; the compiler of Palat. 573 speaks
of his wish that “the work of Maumetto the Arab which as been almost lost be renovated”.

63 It is true that we have not seen the quotients between powers expressed as formal fractions in earlier
manuscripts; however, the way they turn up independently in all three encyclopaediae shows that they
were already part of the heritage – perhaps from Antonio. The interest in such quotients is already
documented in David di Davizzo in 1339, who however makes the unlucky choice to use roots as negative
powers – see [Høyrup 2007c: 478–484].
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though calling the fifth degree cubo di censo, and the sixth (like here) censo di cubo.64

Figure 14
The two presentations of the algebraic powers in Bibl. Estense, ital. 578.

The root names go on with “root of this” for the fifth power – which is probably meant
as “5th root of this”, since the seventh power is “the 7th root of this”. The names for the sixth,
eighth and ninth degree are made by embedding.

After explaining algebraic operations and the arithmetic of monomials and binomials the
manuscript offers a list of algebraic cases followed by examples illustrating them. Here the
symbols are used within the text (there are no marginal calculations) – with one exception,
instead of z a sign is used which is a transformed version of Dardi’s ç – , with variations
that sometimes make it look like a z provided with an initial and a final curlicue.

The problems are grouped in capitoli asking for the same procedure in spite of involving
different powers – chapter 14, for instance, combines “zz and z di zz equals n°” and “c di zz
and QQ equals c”. We may guess that the orderly presentation of the powers in a scheme and
the concept of numerical gradi (our exponents) has facilitated this further ordering. Beyond
this, the abbreviations seem to serve as nothing but abbreviations, though used consistently.

Raffaello Canacci’s use of schemes for the calculation with polynomials (including
multiplication a casella) in the Ragionamenti d’algebra65 from c. 1495 [ed. Procissi 1954:
316–323] was mentioned above. In a couple of these he employs geometric signs for the powers.
Later he presents an ordered list, with three different systems alongside each other – see
Figure 15. To the right we find an extension of a different “geometric” system – namely the
one which was found in a (probably secondary) marginal note in the Ottoboniano encyclopaedia.

64 This difference may tell us something about the spontaneous psychology of embedding: it seems to
be easier to embed within a single than within a repeated multiplication – that is, to grasp censo of P
as (P)2 than to understand cubo of R as (R)3.

65 Florence, Bibl. Naz. Centr., Palat. 567. I have not seen the manuscript but only Angiolo Procissi’s
diplomatic transcriptions.
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Next toward the left we find powers of 2 corresponding to the algebraic powers (an explanatory

Figure 15

Canacci’s scheme with the naming of powers, after [Procissi 1953: 432].

stratagem also used by Pacioli); then letter abbreviations; and then finally, just to the right of
the column with Canacci’s full names, his own “geometric” system (not necessarily invented
by him, but the one he uses in the schemes) – better planned for the economy of drawing than
as a support for operations or algebraic thought. According to Cajori [1928: I, 112f ] the system
turns up again in Ghaligai’s Pratica d’arithmetica from 1552 (and probably in the first edition
from 1521, entitled Summa de arithmetica), where their use is ascribed to Ghaligai’s teacher
Giovanni del Sodo.

Canacci uses the signs slightly later in an brief exposition of the rules for multiplying
powers – and then no more. In the sparse marginal notes to the long collection of problems
[ed. Procissi 1983] he sometimes uses the letter abbreviations (only s and c°) – but also the
line as an indication of equality [ed. Procissi 1983: 58]. In the running text, even formal fractions
are written unabridged.

Three works by Luca Pacioli are of interest: the Perugia manuscript from 1478, the Summa
de arithmetica from 1494, and his translation of Piero della Francesca’s Libellus de quinque
corporibus regularibus as printed in [1509].

Since there is only one brief observation to make on the latter work, I shall start by that.
According to the manuscript Vatican, Urb. lat. 632 as edited by G. Mancini [1916: 500f ]. Piero
uses the familiar superscript square for censowhen performing algebraic calculations, or writes
words. Pacioli [1509: 3v–26r, passim] instead uses a sign for the cosa and for the censo
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(or, in the old unsystematic way, words). Censo di censi is on fol. 4r and de on fols.
4r and 11v. These geometric signs are absent from Pacioli’s other works, and they must rather
be considered a typographic experiment – given that their use is not systematic, they can hardly
be understood as an instance of mathematical exploration beyond what Pacioli had done before.
It is difficult to agree with Paola Manni [2001: 146] that they should represent “progress of
mathematical symbolism” with respect to the more systematic use of letter abbreviations in
the Summa (see imminently; and cf. the quotation from Woepcke after note 11).

The 1478 Perugia manuscript Suis carissimis disciplis ... (Vatican, Vat. lat. 3129) has lost
the systematic algebra chapters listed in the initial table of contents,66 but it does contain
algebraic calculations. Everywhere here – in the main text as well as in the margin, and in the
neat original prepared in 1478 as well as in fols. 350r–360v, added at a later moment and
obviously very private notes – we find the signs from Canacci’s right-hand column (Figure 15)
written superscript and to the right – on fol. 360v extended until , censi di censi di censi.
There is thus no doubt that this system was what Pacioli used when calculating for himself,
at least at that moment. He also uses the equality line in the margin; at the corresponding place
inside the text we often encounter the sign ^/ between the word equale and the right-had side;
whether this is meant to mark the presence of an equation is not clear (to me).

Most important (in the sense that it was immensely influential and the other two works
not) is of course the Summa [Pacioli 1494]. Typographic constraints may have caused Pacioli
to give up his old notation. In ordinary algebraic computation, he now uses .co. and .ce. written
on the line. However, he also has more orderly presentations. The first, in the margin of fol.
67v, shows how the sequence .co.-.ce. is to be continued, namely (third power) cubo, (4th) censo
de censo, (5th) primo relato, (6th) censo de cubo/cubo de senso, (7th) secundo relato, (8th)
censo de censo de censo, (9th) cubo de cubo, (10th) censo de primo relato, (11th) terzo relato,
etc. until the 29th power. As we see, the embedding principle has now taken over completely,
creating problems for the naming of prime-number powers. For each power the “root name”
is indicated, number being “ prima”, cosa “ 2a”, censo “ 3a”, etc.67 As we see, the “root
number” is not the exponent, but the exponent augmented by 1. This diminishes the heuristic
value of the concept: it still permits to see directly that “6th roots and 4th roots equal 2nd roots”
must be equivalent to “5th roots and 3rd roots equal 1st roots”, but it requires as much thinking

66 See the meticulous description in [Derenzini 1998], here p. 173.

67 Pacioli believes (or at least asserts) that these names go back to “the practice of algebra according to
the Arabs, first inventors of this art”. Could he have been led to this belief by the equivalence of “root”
and thing/cosa in al-Khwārizmı̄’s algebra?
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as in Jacopo’s days almost 200 years earlier to see that this is a biquadratic problem that must

Figure 16
Pacioli’s scheme [1494: 143r] showing the powers with root names.

be solved as “3rd roots and 2nd roots equals 1st roots”.
After this list comes a list of symbols for “normal” roots: meaning radici; meaning

radici de radici; u. meaning radici universale or radici legata, that is, root of a composite
expression following the root sign (encircled in Benedetto’s Trattato and spoken of as “ de
zonzo” by Dardi, we remember); and cu., cube root.

On fol. 143r follows a scheme that deals with the first 30 powers (dignità), and with how
they are brought forth as products (li nascimenti pratici o li 30 gradi de li caratteri algebratici).
It runs in four tangled columns and 30 rows. The first column has the numbered “root name”
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of the power, the second formulates in Pacioli’s normal language or in abbreviations that number
times this power gives the same power. The third, written inside the second, indicates the
corresponding power of 2. The fourth, finally, repeats the second column, now translated into
root names – see Figure 16.

On the next page follow further schemes, expressed in roots names, for the products of
the nth root with all roots from the nth to the (31–n)th (meaning that all products remain within
the range defined by the 30th root), 2≤n≤15.

All in all, we may say that Pacioli explored existing symbolic notations to a greater extent
than for example Benedetto, thus offering those of his readers who wanted it matters to chew;
but he hardly gave them many solutions they could build on. Even in this respect subsequent
authors could easily have found reasons to criticize him while standing on his shoulders (as
they do regularly), if only their own understanding of the real progress they offered had been
sufficient for that. Tartaglia, for instance, gives the list of dignitates until the 29th in La sesta
parte del general trattato [Tartaglia 1560: 2r], with names agreeing with Pacioli’s .co.-.ce.-list
and indication of the corresponding exponents (now segni), alongside a text that explains how
multiplication of dignitates corresponds to addition of segni; that, however, was well after Stifel’s
Arithmetica integra, which Tartaglia knew well.

Summary observations about the German and French adoption

Regiomontanus shows that he knows how to practice algebra, not only in the notes for
the Bianchini-correspondence (cf. above) but also elsewhere – several articles in [Folkerts 2006]
elucidate the topic in detail. Not only the calculation before note 60 but also some of his
abbreviations (and the variability of these) are evident borrowings from Italian models [Høyrup
2007d: 134]. It might seem a not unreasonable assumption that Regiomontanus was the main
channel for the adoption of Italian abbacus algebra into German areas, in spite of his purely
ideological ascription of the algebraic domain to Diophantos and Jordanus (above, text before
note 21).

An influence cannot be excluded, even though those of Regiomontanus’ algebraic notes
we know about may not have circulated widely. However, those of his symbolic notations or
abbreviations which are not to be identified as Italian are already present in a section of a
manuscript possessed by Regiomontanus but not written by him [Folkerts 2006: V, 201f ], cf.
[Høyrup 2007d: 136f ].68.

68 The thing symbol in the appendix to Robert of Chester’s translation of al-Khwārizmı̄ is the same as
Regiomontanus’s transformation of ρ; the census symbol is a z provided with a final curlicue and which
could be derived from the which we find in the Modena-manuscript but is much more likely to
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That Regiomontanus was at most one of several channels can also be seen from the so-called
Deutsche Algebra from 1481 [ed. Vogel 1981]. Its symbols69 for number (denarius, replaces
earlier dragma), thing and census coincide with those of the Robert-Appendix,70 that for the
cube with the one Regiomontanus employs for census – hardly evidence for inspiration from
Regiomontanus. Evidence for Italian inspiration certainly not passing through Regiomontanus
is the re-appearance of the quasi-fraction notation for powers and of 1c for cosa [Vogel 1981:
10] – all in all, as Kurt Vogel observes, evidence that a number of sources flow together in
this manuscript.

I shall not consider in detail German algebraic writings from the sixteenth century (Rudolff,
Ries, Stifel, Scheubel), only sum up that with time German algebra tends to be more systematic
and coherent in its use of symbolism (for notation as well as calculation) than any single Italian
treatise.71 But what the German authors do is to combine and put into system ideas that are
all present in some Italian work. They never really go beyond the Italian inspiration seen as
a whole, and never attain the coherence which appears to have been reached by the Maghreb
algebraists of the twelfth century.72

I shall also be brief on what happened in French area. Scrutiny of Nicolas Chuquet’s daring
exploration of the possibilities of symbolism in the Triparty from 1484 [ed. Marre 1880] would
be a task of its own; his parenthesis (an underlining73) and his complete arithmetization of
the notation for powers as well as roots certainly goes beyond what can be found in anything
Italian until Bombelli, and (as far as the symbols for powers and roots are concerned) even

correspond to its initial use of z in this function.

69 Listed in [Vogel 1981: 11].

70 With ∂ as an alternative for thing, standing probably for dingk.

71 The use of schemes for polynomial arithmetical calculation by Stifel [1544] and Scheubel [1551] was
mentioned above. They also appear in Rudolff’s Coss [1525].

72 Quite new, as far as I know, and awkwardly related to the drive toward more systematic use of notations
(but maybe more closely to the teaching of Aristotelian logic), is the idea to represent persons appearing
in commercial problems by letters A, B, C, .... I have noticed it in Magister Wolack’s Erfurt lecture,
apparently the earliest public presentation of algebra in German land [ed. Wappler 1900: 53f ], and again
in Christoff Rudolff’s Behend und hübsch Rechnung durch die kunstreichen Regeln Algebra #128 [1525:
N vr–v].

73 The only parentheses Italian symbolic notation had made use of were those marked off by the fraction
line and the de zonzo/legata/universale. The latter, furthermore, was ambiguous – how far does the
expression go that it is meant to include? A parenthesis as good and universal as that of Chuquet had
to await Bombelli [1572], even though Pacioli uses brackets containing textual parentheses (e.g., on fol.
3r). As we remember from note 11, even Descartes eschews general use of the parenthesis.
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beyond the Maghreb notation. However, his innovations were historical dead ends; Etienne
de la Roche, while transmitting other aspects of Chuquet’s mathematics in his Larismetique
from 1520, returned to more familiar notations [Moss 1988: 120f ]. What later authors learned
(or, like Buteo, refused to learn, ibid. p. 123) from de la Roche could as well have been
Italian.74

As a representative of the French mid-sixteenth century I shall choose Jacques Peletier’s
L’algebre from [1554] – interesting not least because his orthographic reform proposal [1555;
1554, final unpaginated note] shows him to reflect on notation. Peletier knows Stifel’s
Arithmetica integra, cites it often and learns from it. But he must also know the Italian abbacus
tradition, and not only through Pacioli and Cardano, whom he cites on p. 2: he speaks of the
powers as nombres radicaus (p. 5), and uses for the first power (this, as well as the nombres
radicaus, could be inspired by Pacioli) and the extended ç ( ) which we know from the
Modena-manuscript for the second power (following Stifel for higher powers). That certainly
does not help him get beyond the combination of the most developed elements of Italian
symbolism we know from the German authors – and like Stifel he does not get beyond.

Why should they?

As we have seen, Italian abbacus algebra makes use of a variety of elements that might
have been (and in the main probably were) borrowed from the Maghreb, most of them already
present in one or the other manuscript from the fourteenth century. But the abbacus masters
do not seem to have been eager to use them consistently, to learn from each other or to superate
each other in this domain (to which extent they wanted to avoid to teach symbolism is difficult
to know – it would not have the same value in the competition for jobs and pupils as the ability
to solve intricate questions); Benedetto and the compilers of the Ottoboniano and Palatino
encyclopaediae were quite satisfied with repeating a heritage that may reach back to Antonio,
and did not care about the schemes for polynomial arithmetic that had been in circulation at
least since Dardi’s times. Only with the Modena manuscript, with Canacci and with Pacioli’s
Summa do we find some effort to be encyclopedic (if not systematic) also in the presentation
of notations.

Our meeting is about the “philosophical aspects of symbolic reasoning”, and about “early
modern science and mathematics”. The philosophical question to raise to the material presented

74 The question to which extent the Provençal tradition which Chuquet draws upon was independent of
the Italian tradition (to some extent it certainly was) is immaterial for the present discussion; no earlier
or near-contemporary Provençal writings offer as much incipient symbolism as the Italian abbacus writers.
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above is whether the abbacus masters of the fourteenth and fifteenth century, and even the
algebraic writers of the early and mid-sixteenth century, had any reason to develop a coherent
symbolic approach. The answer seems to be that they had none (cf. also note 45 and preceding
text). The kind of mathematics they were engaged in (even when they applied their art to
Elements X, as do for instance Fibonacci and Stifel) did not ask for that. They might sometimes
extrapolate their technique further than their mathematical practice asked for – 29 algebraic
powers is an example of that, as is of course the creation of never-used symbols for these
powers. But without a genuine practice there was nothing which could force these extrapolations
to merge into a consistent conceptual and operational framework. Even those abbacus authors
that had scholarly ambitions – as Benedetto and his contemporary encyclopedists, Pacioli and
Tartaglia – did not encounter anything within the practice of university or Humanist mathematics
which asked for much more than they did. To the contrary, the aspiration to connect their
mathematics to the Euclidean ideal made them re-attach geometric proofs to a tradition from
which these had mostly been absent, barring the understanding that purely arithmetical reasoning
could be made as rigorous as geometric proofs – barring it indeed to such an extent that Ries
and Scheubel rejected Jordanus’ arithmetical rigour and borrowed only his problems, as we
have seen.

That changed in the outgoing sixteenth century. By then (if I may be allowed some
concluding sweeping statements), Apollonios and Archimedes were no longer mere names (or
at most authors of difficult texts to be assimilated) but providers of problems to be worked
on, and trigonometry had become an advanced topic. This was probably what created the pull
on the development of symbolic reasoning and of those notations that symbolic reasoning presup-
posed if it was to go beyond simple formal fractions; the reaction to this pull (which at first
created a complex of new mathematical developments) was what ultimately transformed symbolic
mathematics into a factor that could (eventually) push the development of (some constituents
of) early modern science.

References

Abdeljaouad, Mahdi, 2002. “Le manuscrit mathématique de Jerba: Une pratique des symboles algébriques
maghrébins en pleine maturité”. Présenté au Septième Colloque sur l’histoire des mathématiques
arabes (Marrakech, 30–31 mai et 1er juin 2002). Mimeo.
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